Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neotrop Entomol ; 51(5): 777-794, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35945398

RESUMO

This study aimed to characterize the quantitative and qualitative damage caused by Deois flexuosa (Walker) (Hemiptera: Cercopidae) adults in Axonopus catharinensis cv. SCS 315 Catarina and Cynodon dactylon (Tifton 85 and Jiggs cultivars) under different infestation densities and, consequently, the expression of tolerance-type resistance. For this purpose, potted plants were infested with different insect densities (0, 5, 10, 20, and 40 adults m-2). The impact of the infestation levels was assessed in the first growth cycle (10-day coexistence period) and in the regrowth (40 days after the first cut, without infestation) based on crop yield and chemical-bromatological composition as well as on photosynthetic pigments and hydrogen peroxide content. The principal component analysis relating infestation density and chemical-bromatological parameters showed a positive correlation between infestation density of D. flexuosa and the contents of neutral detergent fiber, acid detergent fiber, and the dry matter (DM). On the other hand, infestation density inversely correlated with the tillering rate, photosynthetic pigments (chlorophyll a and b, carotenoids), and iron content. In general, the impacts on DM production and chemical-bromatological composition were lower in A. catharinensis cv. SCS 315 Catarina when compared to the Cynodon species, possibly because A. catharinensis has higher tillering capacity and does not show a reduction in the photosynthetic pigments, which may act as compensating factors to D. flexuosa damage. Our results demonstrate that the A. catharinensis cultivar expresses tolerance-type resistance to D. flexuosa and constitutes an interesting option for pasturelands formation and diversification where this spittlebug species is an emerging pest.


Assuntos
Hemípteros , Animais , Carotenoides , Clorofila A , Detergentes , Peróxido de Hidrogênio , Ferro , Poaceae
2.
Plant Dis ; 103(12): 3209-3217, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31657997

RESUMO

Glomerella leaf spot (GLS) of apple is caused by three different Colletotrichum species complexes. This study evaluated the dispersal of Colletotrichum spores related to GLS temporal progress and defoliation. Spores were monitored by air and water runoff in different plant heights, and the temporal progress of GLS and defoliation were assessed. Spores of the pathogen were first cached in the lower part of the tree closer to the ground, confirming the importance of dead leaves on the ground as main source of primary inoculum. In plots with high primary inoculum, the disease increases exponentially during favorable weather conditions. The highest initial inoculum was found in the lower part of the tree, but the highest rate of the disease progress in the upper.


Assuntos
Colletotrichum , Malus , Brasil , Colletotrichum/fisiologia , Malus/microbiologia , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...